

QUESTION OFTHE DAY

How old is the Earth?

Geological Time Scale

A record of Earth's history from it's origins 4.6 billion years ago to the present.

Divided into eons

- Eons are divided into eras
- Eras are divided into periods
- Periods are divided into epochs

Unlike divisions of time such as days or minutes, the divisions of the geological time scale have no fixed lengths

- Instead, they are based on changes or events recorded in rocks and fossils

What are some things you know about Earth's history?

Relative-Age Dating

Geologic Principles

- Relative-Age Dating - Places the ages of rocks and events that formed them in order, but without exact dates.

1. Principle of Original HorizontalitySedimentary rocks are deposited in horizontal or nearly horizontal layers.
2. Principle of Superposition - In an undisturbed sedimentary rock sequence, the oldest rocks are at the bottom and each successive layer is younger than the layer beneath
3. Principle of Cross-Cutting Relationships - An intrusion or a fault is younger than the rock it cuts across. (Rocks must exist before something happens to them)
4. Principle of Inclusions - Small fragments of one type of rock but embedded in a second layer of rock must have formed first.

Absolute-Age Dating

 Nucleus

Carbon-13 Nucleus

Carbon-14 Nucleus

PARENT

- Absolute-Age Dating - Identifies the actual age of rocks, fossils or other geologic events using radioactive decay.
- Radioactive decay is the constant rate of decay for radioactive parent isotopes into daughter isotopes. These isotopes can be found in igneous rock, metamorphic rock, some fossils, and organic remains.
- Half- life of an isotope is the time it takes for $1 / 2$ of the parent atoms in the isotope to decay.
- If an isotope has a half-life of 4000 , then after 4000 years $1 / 2$ of the parents isotope will remain. After another 4000 years $1 / 2$ of the $1 / 2$ remains, or $1 / 4$.
- If a scientist knows the half-life of an isotope and measures the proportion of parent to daughter isotopes, they can calculate the absolute age of the rock.

Commonly used radioactive isotopes

Parent	Daughter	half-life	Mineral or Material
Uranium238	Lead 206	4.56 BY	Zircon, Uraninite, Pitchblende
Uranium 235	Lead 207	704 MY	Zircon, Uraninite, Pitchblende
Potassium 40	Argon 40	1.251 BY	Muscovite, biotite, hornblende, K-feldspar, volcanic rock, glauconite, conodonts
Rubidium 87	Sr 87	48.8 BY	K-mica, K-feldspar, Biotite, Metamorphics
Thorium 230	Lead 206	75 KY	Ocean sediments
Thorium 232	Lead 208	1.39 BY	Zircon, Uraninite, Pitchblende
Carbon 14	Nitrogen 14	5730 yr	Wood, bone, shell

KY- thousand years. MY- million years. BY- billion years

Eons

An eon is the longest subdivision and is based on the abundance of certain fossils

The first 3 eons make up Precambrian Time

- Makes up 88% of the history of the Earth.
- "Supereon"
- Relatively little is known about this time

4 main eons

- Hadean (PT) - 4600 to 4000 mya
- No rocks on Earth are known to be this old
- Meteorites and the moon
- Archean (PT)-4000 to 2500 mya
- Oldest known rocks
- Life first appears
- Earth cools enough to form rocks and oceans
- Proterozoic (PT) - 2500 to 542.0 mya
- Cyanobacteria start to produce oxygen

Eon	Era	Period	Epoch	
	Cenozoic	Quaternary	Holocene	Today
			Pleistocene	
		Neogene	Pliocene	
			Miocene	
		Paleogene	Oligocene	
			Eocene	
			Paleocene	
	Mesozoic	Cretaceous	~	- 252 Ma
Phanerozoic		Jurassic	\sim	
		Triassic	~	
	Paleozoic	Permian	~	
		Carboni- Pennsylvanian	~	
		ferous Mississippian	~	
		Devonian	\sim	
		Silurian	\sim	
		Ordovician	~	
		Cambrian	~	-541 Ma
Proterozoic	~	~	~	$-2.5 \mathrm{Ga}$
Archean	~	~	\sim	
Hadean	\sim	\sim	\sim	-4.0.54 Ga

- Phanerozoic - 542.0 mya to present
- Began with the Cambrian Explosion

Eras

An era is the next-longest subdivision. It is marked by major changes in the fossil record.

3 eras

- Paleozoic (old life)-542.0 to 251.0 mya
- Age of Invertebrates
- Life comes up on land
- Mesozoic (middle life)- 251.0 to 65.5 mya
- Age of Reptiles
- Dinosaurs
- Cenozoic (recent life) - 65.5 mya to present
- Age of Mammals

	Eon	Era	Period	Epoch	
	Phanerozoic	Cenozoic	Quaternary	Holocene	Today
				Pleistocene	
			Neogene	Pliocene	
				Miocene	
			Paleogene	Oligocene	
				Eocene	
				Paleocene	Ma
		Mesozoic	Cretaceous	\sim	$\sim 252 \mathrm{Ma}$
			Jurassic	\sim	
			Triassic	\sim	
		Paleozoic	Permian	~	
			Carboni- Pennsylvanian	\sim	
			ferous Mississippian	\sim	
			Devonian	\sim	
			Silurian	~	
			Ordovician	\sim	
			Cambrian	\sim	541 Ma
$\frac{\frac{1}{0}}{\frac{0}{0}}$	Proterozoic	\sim	~	\sim	
	Archean	~	~	~	
	Hadean	\sim	\sim	\sim	

